The Spectrum of Solar Wind Charge Exchange Emission:

Contribution to the SXRB

Hi all!
I'm sorry I
can't be there
with you...

D. Koutroumpa, R. Lallement &

V. Kharchenko, A. Dalgarno

Local Bubble & Beyond II
April 21-24, 2008
Philadelphia, USA

Outline

- General characteristics of heliospheric SWCX emission
 - Model description:
 - Stationnary
 - Dynamic
- Model-Data comparison (using shadowing observations)
 - ¾ keV band (Chandra, XMM, Suzaku)
 - ¼ keV band (ROSAT, Wisconsin surveys)

Contributions to the Soft X-ray Background

Where does the heliospheric emission end?

Interstellar Neutrals H, He all around the Heliosphere

Along a given line-of-sight the contribution to the emission ends:

- either at the heliopause
- in the downwind direction where the particular solar ion has been entirely consumed

CX emissivity $\varepsilon_{h\nu}$ along a Line-Of-Sight

88% of total emission due to H in D<10 AU 98% of total emission due to He in D<5 AU

For an observer on Earth the inner Heliosphere contributes the most to the SXRB, with respect to the Heliosheath

Spectra of SWCX emission 0.1-1 keV

Computed X-ray maps: OVIII 0.65 keV

Observer at $\lambda = 74^{\circ}$

Observer at $\lambda = 252^{\circ}$

Temporal variability of the ¹/₄ keV background: CX signature

First simplified model: Cravens et al, 2001, J. Geophys. Res

GEOCORONA X-ray contribution to the ROSAT 0.25 keV background:
About 1/10 of the average measured

background

Smooth heliospheric lightcurves can be tricky: ex. MBM 12 (Feb. 2006, Suzaku)

-Global solar activity: Min, higher SWCX X-rays than Max

-LOS crossing the He cone: OFF-cloud exposure sees denser IP region

-Local SW conditions: Intense spike at end of ON-cloud exp.

Koutroumpa et al., 2007

 $I (O^{6+}) = 3.56 LU$

 $I(O^{7+}) = 0.5 LU$

$$I(O^{6+}) = 4.62 LU$$

 $I(O^{7+}) = 0.77 LU$

08/02/2006

Data (Smith et al., 2007):

 $I(O^{6+}) = (3.34 \pm 0.26) LU$

 $I(O^{7+}) = (0.24\pm0.10) LU$

Date

ON-CLOUD:

Model intensities:

OFF-CLOUD:

Model intensities:

Using Shadowing observations

Targets: Dense molecular clouds

OFF-CLOUD:

Foreground (geocorona, heliosphere, LB)

Distant (galactic halo, extragalactic)

ON-CLOUD (ideal case):

All distant components are absorbed

SWCX Model to Unabsorbed (Local) Data Fit in 3/4 keV band

SWCX model applied to 2 shadowing fields:

- -MBM 12 (Chandra 2000, Suzaku 2006)
- -South Galactic Filament SGF (XMM 2002, Suzaku 2006)
- -Taking into account real observation geometry
- -Real-time SW conditions: max in 2000-2002 and min in 2006

Old analysis →Koutroumpa et al., 2007 New analysis →updates from Henley et al., 2008

<u>Unabsorbed emission attributed to the</u> <u>Local Bubble in the 3/4 keV band consistant</u> <u>with zero:</u>

OVII: LB $I_o = (0.09 \pm 0.73) \text{ LU}$ OVIII: LB $I_o = (0.46 \pm 0.44) \text{ LU}$

Using shadowing in the 1/4 keV band

soft X-ray background that does NOT anticorrelate with the IS column density

Soft X-ray shadows study: ROSAT R1+R2 (R12) data correlated with IRAS (100 \mu m) data (scaled to H I column density)

$$I_x = I_0 + I_1 \times \exp [\sigma(N_H, T_{6.0}) \times N_H] + A$$

I_x: observed intensity

I_o: Foreground emission

I₁: Halo emission

A: fixed emission for absorbed

hot Halo & ExtraGalactic

I_o: attributed to the Local Bubble

X-ray intensity (10⁻⁶ counts s⁻¹ arcmin⁻²) vs H_I column density N_H(10²⁰ cm⁻²)

Model-Data comparison: 1/4 keV

-Spectra calculated in ROSAT observation geometry

-Convolved with ROSAT R1, R2 & Wisconsin B, C band responses

Comparison to Wisconsin B band

Snowden et al., 1990

-Still good agreement in low G latitudes for C band (similar to R12)

-SWCX emission not enough to account for the emission observed in the B band

There is more than SWCX in the local SXRB

BUT WHAT?

- -Can not be at too high temperature (T < 10^6 K) \rightarrow SWCX must be included
- -Can not be too low → OVI observational constraints

Conclusions

- 3/4 keV: shadows ⇒ (almost) all the LOCAL component is SWCX from the Heliosphere
- 1/4 keV:
 - Band ratios (R2/R1 & B/C) for the data were interpreted only in terms of hot gas plasma emission from the LB (Heliospheric SWCX was unknown & thus neglected)
 - Heliospheric SWCX simulations give sufficient emission in the R12 (or C) band ⇒ could account for SXRB in the GALACTIC DISK
 - SWCX model lower in the B band with respect to data
 - Including the heliospheric SWCX component to the data interpretation still leaves place for a 'WARM' Local Bubble \Rightarrow T<10⁶ K
- Data analysis in both (¾ & ¼ keV) bands should be revised to include SWCX